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Abstract

The modeling of laser heating process is essential for better understanding of the physical phenomena that occur as

laser interacts with the workpiece. The Fourier heating model is not applicable for certain range of laser pulses.

Consequently, new models of the laser heating process that eliminate this shortcoming of the Fourier heating model are

needed. In the present study, a three-dimensional laser heating process based on the electron kinetic theory is intro-

duced. The temperature pro®les predicted from the kinetic theory are compared with the Fourier theory ®ndings. The

convergence of three-dimensional to one-dimensional heating is investigated. The electron kinetic theory predictions are

also compared with the two-equation model results for a one-dimensional case. The study is extended to include two

di�erent laser pulse lengths. It is found that three-dimensional heating approaches its one-dimensional counterpart for

the Gaussian intensity pro®le. As the pulse length shortens, the Fourier theory predicts higher temperatures in the

surface region of the substrate as compared to that predicted from the electron kinetic theory. The temperature pro®les

obtained from the two-equation model and the kinetic theory are almost identical for the short pulse length employed in

the present study. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Lasers ®nd wide application in various electronic

industries because of their precision of operation, low

cost, and resulting high quality of end product. The

modeling of the heating process minimizes the exper-

imental cost and gives insight into the physical

phenomena involved during interaction between the

laser and workpiece. Considerable research studies were

conducted in the past to explore the laser heating pro-

cess [1±3]. Most of these theoretical studies relied on the

Fourier heating model, which did not give accurate re-

sults beyond certain ranges of laser pulses [4]. As the

pulse length reduces to sub-nano-seconds, the Fourier

heating model fails to predict the temperature pro®les

correctly [5]. This is because of the fact that the Fourier

heating is only applicable when the spacing between two

isothermal planes, where the heat conduction takes

place, is greater than the interatomic spacing of the

material. Harrington [6] showed that, in metals, elec-

trons within a couple of electron mean free paths con-

tribute over 98% of the total energy transported; in

which case, the temperature gradient (o/=ox) should be

constant over at least this distance. Consequently, the

Fourier heating model should be applicable for dis-

tances not less than this distance. Moreover, in the

Fourier heating model, high order temperature gradi-

ents (o3/=ox3, etc.) are omitted, but the high order

terms play a signi®cant role in short pulse laser heating.

This is because the temperature gradient between two

closely spaced planes is electron energy distribution

dependent. Moreover, the depth of energy absorbed by

the metal during laser radiation is almost on the order

of a couple of mean free paths; therefore, at high laser

power intensities and short interaction time, the tem-

perature gradient across two closely spaced isothermal

planes is not constant. In order to overcome the inac-

curacy that arises in the Fourier heating model, a new

model based on electron movement in the solid should

be considered.
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Studies on non-equilibrium conduction heating were

initiated earlier [7]. The existence of low speci®c heat of

electrons allowed the consideration of the electrons be-

ing isolated from the lattice site for ultra-short duration

of heating. In this case, the electron motion in surface

vicinity under the electromagnetic radiation enabled the

mechanisms of electron excitation and electron±phonon

interactions to be considered when modeling the non-

equilibrium heating process. The two-equation model

was ®rst introduced by Anisimov et al. [7] in this regard.

In the later stage, the model was further investigated

and the predictions were validated through the experi-

mentation [8]. In the study, a picosecond laser pulse

heating of copper was carried out and it was shown that

the macroscopic calculations of energy relaxation in the

two-equation system of electrons and phonons agreed

with initial measurements of copper thermore¯ectance

transients at 100 and 300 K. Later, a two-equation

model was introduced for short pulse heating of gold

substrate by Qiu and Tien [9]. They indicated that the

conventional one step radiation heating (Fourier heat-

ing model) over-predicted the heat-a�ected region.

However, in a slow heating regime (nano second heating

pulse), the two-equation model reduced to a Fourier

heating model. The femtosecond laser heating of multi-

layer metals was also studied by Qiu and Tien [10]. They

showed that a multi-layer metallic system gave di�erent

responses to laser pulse heating as compared to a single-

layer metal system. In this case, most of the absorbed

energy was converted into lattice energy in the chro-

mium layer rather than in the gold layer. The e�ect of

interfacial roughness on phonon radiative heat con-

duction was examined by Majumder [11]. He indicated

that due to the fractal characteristics of the surface, the

amount of surface exposed to incident phonons in-

creased with the frequency of phonons. Moreover, be-

cause of the increase in surface area, the resistance to

heat transport by phonons decreased for higher fre-

quencies. A uni®ed approach for heat conduction from

macro-to-micro scales was introduced by Tzou [12]. He

proposed a universal equation between the heat ¯ux

vector and the temperature gradient to cover the fun-

damental behaviors of di�usion, wave, phonon±electron

interactions, and pure phonon scattering. He indicated

that the universal form of the energy equation facili-

tated the identi®cation of physical parameters for

transitions among the governing mechanisms. A relax-

ation model accounting for the ®nite velocity of heat

propagation and the inertia of the internal heat source

for the heat conduction and generation was introduced

by Malinowski [13]. The ®nite velocity of heat propa-

gation and the inertia of the internal heat source were

considered in the hyperbolic heat conduction equation.

He introduced the analytical solution of initial value

problems for heat conduction and generation. He ob-

served that unlike the classical hyperbolic model, the

relaxation model did not tend to approach the corre-

sponding parabolic solution.

Yilbas [14] introduced the electron kinetic theory

approach pertinent to the laser pulse heating process.

Nomenclature

A area where electrons ¯ux (m2)

a Gaussian parameter

Cpe electron heat capacity (J/kg K)

Cpl lattice heat capacity (J/kg K)

Cp speci®c heat (J/kg K)

G coupling factor (W/m3 K)

E�s; y; z; t� electron energy in the x-axis (J)

E�x; g; z; t� electron energy in the y-axis (J)

E�x; y; f; t� electron energy in the z-axis (J)

E�x; y; z; t� phonon energy (J)

f fraction of excess energy exchange

h Planck's constant (10ÿ34 J s)

I0 laser peak power intensity (W/m2)

Isurf laser power intensity at the surface

(W/m2)

k thermal conductivity (W/m K)

kB Boltzmann's constant (1:38� 10ÿ23 J/K)

M atomic mass (10ÿ27 kg)

me electron mass (10ÿ31 kg)

N electron number density (1/m3)

rf re¯ection coe�cient

S source term

/�x; y; z; t� lattice site temperature (K)

/�x; t� phonon temperature in one-dimensional

motion (K)

V electron mean velocity (m/s)

x; y; z spatial coordinates in the x-, y-, z-axis

for phonon (m)

s; g; f spatial coordinates in the x-, y-, z-axis

for electron movement (m)

d x� � delta Dirac function

d absorption coe�cient (1/m)

�h Planck's constant (1:054592� 10ÿ34 Js)

h�s; t� electron temperature in one-dimensional

motion (K)

h�s; y; z; t� electron temperature in the x-axis (K)

h�x; g; z; t� electron temperature in the y-axis (K)

h�x; y; f; t� electron temperature in the z-axis (K)

k mean free path of electrons (m)

v frequency (1/s)

q density (kg=m
3
)

s electron mean time between electron±

phonon coupling (s)
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The electron kinetic theory of heating relies on the

electron lattice site atom collisions; in this case, the

microscopic e�ects in the energy exchange mechanisms

play a major role. The process of energy exchange

mechanism can be described as follows: the energy

gained by the electrons due to laser electromagnetic

radiation is transferred to the lattice site atoms in the

surface vicinity through successive electron lattice site

atom collisions. This forces the neighboring atoms in

the lattice to vibrate with higher amplitude resulting in

increased lattice site temperature. The electron kinetic

theory predictions for the temperature distribution in

the surface vicinity of the substrate di�er from the

predictions of Fourier theory when the laser pulse

length reduces to sub-nano-seconds [5]. The electron

kinetic approach based on the collisional process was

studied analytically for one-dimensional heating model

[15]. The analysis was limited to one-dimensional

heating case, which did not provide information on the

temperature pro®les in the radial direction due to pulse

intensity distribution at the workpiece surface. Conse-

quently, to examine the e�ect of pulse intensity distri-

bution on the temperature pro®les and to identify the

deviation of temperature pro®les due to sub-nano-

second pulse laser heating, the present study is carried

out. To predict the temperature pro®les, the three-di-

mensional form of the electron kinetic theory approach

is introduced and the di�erential form of the heat

transfer equation is deduced using the Fourier trans-

formation method as it was used in the previous study

[15]. The predictions are compared with the Fourier

heating model ®ndings for the same pulse properties.

The study is extended to include the comparison of

the electron kinetic theory predictions with the two-

equation model results.

2. Mathematical analysis and numerical solution

The three heat conduction models are presented un-

der the appropriate sub-headings. In order to avoid

lengthy arguments, only the necessary mathematical

arrangements of the governing equations are given here.

In the analysis, the laser power intensity pro®les are

assumed to be Gaussian and the spatial location of in-

tensity distribution at 1=e points corresponds to 2=3 of

the laser beam diameter (2r0, where r0 is the laser beam

radius 0:28� 10ÿ3 m). In this case, Gaussian intensity

pro®le Isurf at the workpiece surface is

Isurf � I0�1ÿ rf ����
p
p

a
exp

�
ÿ y2 � z2

a2

�
;

where I0 is the peak power intensity, rf the surface re-

¯ectivity, and a is the Gaussian parameter.

2.1. Fourier heating model (one equation model)

The three-dimensional Fourier equation governing

the laser heating pulse can be written as

qCp

o
ot

/�x; y; z; t�

� k
o2/�x; y; z; t�

ox2

�
� o2/�x; y; z; t�

oy2
� o2/�x; y; z; t�

oz2

�
� Isurfd exp�ÿdx�; �1�

where Isurf is the pulse intensity distribution at the sur-

face and d is the absorption coe�cient.

Since the heating takes place during a short duration

of time and the size of the heated spot is considerably

small, the convection and radiation losses from the

surface are assumed to be negligible. In this case, the

boundary condition at the surface yields (x � 0)

o/�x; y; z; t�
ox

����
x�0

� 0

and the remaining boundary conditions are

/�1; y; z; t� � 0 : /�x;1; z; t� � 0 : /�x; y;1; t� � 0:

The initial condition at t � 0 is

/�x; y; z; 0� � 0:

The solution of Eq. (1) is obtained numerically with the

appropriate boundary conditions.

2.2. Two-equation model

The non-equilibrium radiation heating process may

be modeled through the two-step process [7]. These steps

include: (i) the absorption of photon energy by elec-

trons, and (ii) the heating of the lattice through electron±

phonon coupling. The one-dimensional mathematical

analysis of the model is given in the previous study [7];

therefore, only the governing equations in the one-

dimensional form are presented herein. The equations

representing the energy exchange mechanism during

phonon absorption and electron±phonon coupling are

oh�s; t�
ot

� r�kh�s; t�� ÿ G�h�s; t� ÿ /�x; t�� � S

and

Cl

o/�x; t�
ot

� G�h�s; t� ÿ /�x; t��;

h�s; t� and /�x; t� are the electron and lattice site tem-

peratures, S the laser source term �I0�1ÿ rf �d exp�ÿdx��,
and Ce �Ce � qCpe� and Cl �Cl � qCpl� are the electron

and lattice heat capacities, respectively. I0 is the peak

power intensity and G is the electron±phonon coupling

factor, given by
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G � p2meneV
2

6sh�s; t� ;

where me; ne; V ; s; h�s; t� are electron mass, electron

number density, electron mean velocity, the electron

mean free time between electron±phonon coupling, and

electron temperature, respectively. The governing

equations are solved numerically.

2.3. Kinetic theory approach

Some parts of the analysis of the kinetic theory model

dealing with the collision probabilities are not given

here, but are referred to [14,15].

The absorption of the incident laser beam takes place

in the x-axis; therefore, the intensity of the incident

beam at any plane x inside the substrate is

I � Isurf exp�ÿdx�
and in the limit, for a small section Dx resolved at x, the

energy absorbed is

I � dIsurf exp�ÿdx�
or

I � ÿIsurf

d

dx
�f �x��

or

I � ÿIsurf f 0�x�;
where f 0�x� is the absorption function. The incident laser

beam will be absorbed in a way described by

ÿf 0�x� � d

dx
�exp�ÿd xj j��

for all x.

Moreover, the possibility exists that electron number

densities may vary throughout the material, i.e., the

number of electrons traveling from ds to dx (Fig. 1) may

not be the same as that from dx to ds. Consequently, the

proportion of energy which is absorbed by electrons

traveling from ds to dx in time dt is

ÿIsurf Ayz dt duf 0�u� Nsx

Nsx � Nxs
;

where Ayz is the area that electrons pass through in the x-

axis, f 0�u� the absorption function (d=du�exp�ÿdjuj��),
Nsx and Nxs are the number of electrons traveling from

bulk to surface (s to x) and surface to bulk (x to s) as

depicted in Fig. 1. Therefore, the total amount of energy

absorbed by the electrons from dx to ds is

DEAbsorption �
Z x

0

Isurf

f 0�u�Nsx

�Nsx � Nxs�V
du;

where V is the mean velocity of the electrons.

The amount of energy which electrons transfer to the

lattice site atoms in the surface vicinity can be formu-

lated as follows.

The amount of energy which electrons transfer to the

lattice site atoms in the x-axis can be written as [14,15]

DEx � dx dtAyz

Z 1

ÿ1

NsxV f kB

k2

� exp

�
ÿ jxÿ sj

k

�
�h�s; y; z; t� ÿ /�x; y; z�� ds;

where Ayz is the area that electrons pass over in the x-axis

(Ayz � dy dz) and k is the mean free path.

The total amount of energy which transfers to the

lattice site atoms due to successive electrons lattice site

atoms collisions in the y- and z-axes can be written

similarly to that written for the x-axis. The total amount

of energy transfer to lattice site atoms in the y-axis is

DEy � Axz dy dt
Z 1

ÿ1

NgyV f kB

k2

� exp

�
ÿ y ÿ gj j

k

�
�h�x; g; z; t� ÿ /�x; y; z�� dg:

Total amount of energy transfer to lattice site atoms in

the z-axis is

DEz � Axy dz dt
Z 1

ÿ1

N1zV f kB

k2

� exp

�
ÿ y ÿ 1j j

k

�
�h�x; y; 1; t� ÿ /�x; y; z�� d1;

where Axz is the area that electrons pass over in the y-axis

(Axz � dx dz) and Axy is the area that electrons cross over

in the z-axis (Axy � dx dy).

The total amount of energy transfer to the lattice site

atoms in the x-, y-, and z-axes due to the collisional

process is

DE � DEx � DEy � DEz

or the total amount of energy transfer per unit volume

and per unit time dt is:
Fig. 1. Electron movement in the surface vicinity (x � 0 is the

surface).
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DE
dx dy dz dt

�
Z 1

ÿ1

NsxV f kB

k2
exp

�
ÿ xÿ sj j

k

�
�h�s; y; z; t�

ÿ /�x; y; z�� ds�
Z 1

ÿ1

NgyV f kB

k2

� exp ÿ y ÿ gj j
k

� �
�h�x; g; z; t�

ÿ /�x; y; z�� dg�
Z 1

ÿ1

N1zV f kB

k2

� exp ÿ y ÿ 1j j
k

� �
�h�x; y; 1; t�

ÿ /�x; y; z�� d1:

Since the energy which is transferred to the lattice site

atoms in the collisional process results in a change of

both potential and vibration energy, then

DE
dx dy dz dt

� DEAbsorption

� o
ot
�NM�U0 � 3kB/�x; t��� � qCp

o/�x; y; z; t�
ot

�2�

and the complete energy equation for the collisional

process becomes

qCp

o/�x; y; z; t�
ot

�
Z 1

ÿ1

NsxV f kB

k2

� exp

�
ÿ xÿ sj j

k

�
�h�s; y; z; t� ÿ /�x; y; z�� ds

�
Z 1

ÿ1

NgyV f kB

k2
exp ÿ y ÿ gj j

k

� �
�h�x; g; z; t�

ÿ /�x; y; z�� dg�
Z 1

ÿ1

N1zV f kB

k2

� exp ÿ y ÿ 1j j
k

� �
�h�x; y; 1; t� ÿ /�x; y; z�� d1

�
Z 1

ÿ1

Isurf

k2

fNsx

Nsx � Nxs
exp ÿ xÿ sj j

k

� �Z s

x
f 0�u� du ds:

�3�
The ®nal temperature of the electrons in the volume

element (dx dy dz) after the collisional process can be

readily found from the conservation of energy, i.e.

Total electron energy after collision

� Total electron energy during dt

ÿ Change of lattice site energy

The total electron energy after collision is as follows:Z 1

ÿ1

NsxV �1ÿ f �kB

k2
exp

�
ÿ xÿ sj j

k

�
h�s; y; z; t� ds;Z 1

ÿ1

NgyV �1ÿ f �kB

k2
exp ÿ xÿ gj j

k

� �
h�x; g; z; t� dg;Z 1

ÿ1

N1zV �1ÿ f �kB

k2
exp ÿ xÿ 1j j

k

� �
h�x; y; 1; t� d1: �4�

The total electron energy carried into volume element

during dt isZ 1

ÿ1

NsxV kB

k2
exp

�
ÿ xÿ sj j

k

�
h�s; y; z; t� ds

�
Z 1

ÿ1

NgyV kB

k2
exp ÿ xÿ gj j

k

� �
h�x; g; z; t� dg

�
Z 1

ÿ1

N1zV kB

k2
exp ÿ xÿ 1j j

k

� �
h�x; y; 1; t� d1

�
Z 1

ÿ1

I0f

k2

Nsx

Nsx � Nxs
exp ÿ xÿ sj j

k

� �Z s

x
f 0�u� du ds

�5�
and the change of lattice site atom energy is

qCp

o/�x; y; z; t�
ot

as given by Eq. (2).

Consequently, substituting Eqs. (2), (4), and (5) into

the requirement of the conservation of energy givesZ 1

ÿ1

NsxV kB

k2
exp

�
ÿ xÿ sj j

k

�
�h�s; y; z; t�

ÿ f /�x; y; z; t�� ds�
Z 1

ÿ1

NgyV kB

k2

� exp ÿ xÿ gj j
k

� �
�h�x; g; z; t� ÿ f /�x; y; z; t�� dg

�
Z 1

ÿ1

N1zV kB

k2
exp ÿ xÿ 1j j

k

� �
�h�x; y; 1; t�

ÿ f /�x; y; z; t�� d1

�
Z 1

ÿ1

NsxV kB

k2
exp ÿ xÿ sj j

k

� �
�1ÿ f �h�s; y; z; t� ds

�
Z 1

ÿ1

NgyV kB

k2
exp ÿ xÿ gj j

k

� �
�1ÿ f �h�x; g; z; t� dg

�
Z 1

ÿ1

N1zV kB

k2
exp ÿ xÿ 1j j

k

� �
�1ÿ f �h�x; y; 1; t� d1

�
Z 1

ÿ1
�1ÿ f � Nsx

Nsx � Nxs

� exp ÿ xÿ sj j
k

� �Z s

x
f 0�u� du ds: �6�

Eqs. (3) and (6) have been kept in general form; how-

ever, it may be useful to consider a particular case,

where electrons cannot escape through the surface

(which may equally apply when a steady state space

charge exists [14]).

In this case, the assumption that all directions of

travel are equally probable gives

Nsx � Nxs � N
6
; �7�

where N is the number of free electrons per unit volume.

In this case, Eqs. (5) and (8) yield
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qCp

o/�x; y; z; t�
ot

�
Z 1

ÿ1

fk

k3
exp

�
ÿ xÿ sj j

k

�
�h�s; y; z; t� ÿ /�x; y; z�� ds

�
Z 1

ÿ1

fk

k3
exp ÿ y ÿ gj j

k

� �
�h�x; g; z; t� ÿ /�x; y; z�� dg

�
Z 1

ÿ1

fk

k3
exp ÿ y ÿ 1j j

k

� �
�h�x; y; 1; t� ÿ /�x; y; z�� d1

�
Z 1

ÿ1

Isurf

k2

fNsx

Nsx � Nxs
exp ÿ xÿ sj j

k

� �Z s

x
f 0�u� du ds

�8�
which makes use of the simple kinetic theory result for

the thermal conductivity

k � NV kBk
6

andZ 1

ÿ1

k

k3
exp

�
ÿ xÿ sj j

k

�
�h�s; y; z; t� ÿ f /�x; y; z; t�� ds

�
Z 1

ÿ1

k

k3
exp ÿ xÿ gj j

k

� �
�h�x; g; z; t� ÿ f /�x; y; z; t�� dg

�
Z 1

ÿ1

k

k3
exp ÿ xÿ 1j j

k

� �
�h�x; y; 1; t� ÿ f /�x; y; z; t�� d1

�
Z 1

ÿ1

k

k3
exp ÿ xÿ sj j

k

� �
�1ÿ f �h�s; y; z; t� ds

�
Z 1

ÿ1

k

k3
exp ÿ xÿ gj j

k

� �
�1ÿ f �h�x; g; z; t� dg

�
Z 1

ÿ1

k

k3
exp ÿ xÿ 1j j

k

� �
�1ÿ f �h�x; y; 1; t� d1

�
Z 1

ÿ1
�1ÿ f � Nsx

Nsx � Nxs
exp ÿ xÿ sj j

k

� �Z s

x
f 0�u� du ds:

�9�
Eqs. (8) and (9) are the equations of interest for laser

machining. The method of solution to be used in the

following analysis is the transformation of the simul-

taneous di�erential±integral Eqs. (8) and (9) using the

Fourier integral transformation, with respect to x, y,

and z. The resultant ordinary di�erential equations may

then be handled much more conveniently. Although,

three-dimensional analysis of Fourier transformation,

which is considered in the present study, is similar to

that carried out for one-dimensional model studied

previously [15], some of the details of these trans-

formations are also presented below. This enhances the

understanding of each step involved in the Fourier

transformation for three-dimensional case.

Consider ®rst reduction of the set of equations to the

di�erential equation of heat conduction. The Fourier

transformation of a function f �x� is de®ned by

F �f �x�� �
Z 1

ÿ1
exp�ÿixx�f �x� dx � F �x�

and the Fourier inversion by

f �x� � 1

2p

Z 1

ÿ1
F �x��exp�ÿixx� dx:

The Fourier transformation of the convolution integralZ 1

ÿ1
f �n�g�xÿ s� ds

is the product of the transforms

f �x� � g�x�

and the transform of function exp�ÿjxj=k� is

2k

1� x2k2
:

The Fourier transform of the function

U �
Z 1

ÿ1

k

k3
exp

�
ÿ xÿ sj j

k

�
/�x; t� ds

will be a constant factor (the value of integral) multi-

plying the transform of the function /�x; t�, i.e.,

F �U� � kf

k3
/F

Z 1

ÿ1
exp

��
ÿ xÿ sj j

k

�
ds
�

or

F �U� � kf

k3
/F

Z 1

ÿ1
exp

��
ÿ xÿ sj j

k

�
H� sj j� ds

�
;

where H�jsj� � 1 for ÿ1 < s <1.

Therefore:

F �U� � kf

k3
/F

Z 1

ÿ1
exp

��
ÿ xÿ sj j

k

��
F fH� sj j� dsg

6 kf

k3
/

2k

x2
xk

2 � 1
d�xx�;

where d�xx� is the Dirac delta function. Since this

function only has a value of 1 at xx � 0, then the

transform is

kf

k2
/

These results can also be applicable for the y- and z-axes.

Consequently, using these results, Eqs. (8) and (9) can be

Fourier transformed, the result of which is:

o
ot
�qCp/� � kf

k3

2k

x2
xk

2 � 1
h

" #
� kf

k3

2k

x2
yk

2 � 1
h

" #

� kf

k3

2k

x2
z k

2 � 1
h

" #
ÿ kf

k2
/

� I0df
2k

� �
2k

x2
xk

2 � 1

" #
2d

d2 � x2
x

" #
�10�
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and

k

k2
h
� ÿ f /

� � k�1ÿ f �
k3

� �
2k

x2
xk

2 � 1

" #
h

� k�1ÿ f �
k3

� �
2k

x2
yk

2 � 1

" #
h

� k�1ÿ f �
k3

� �
2k

x2
z k

2 � 1

" #
h

� I0d�1ÿ f �
2k

2k

x2
xk

2 � 1

" #
2d

d2 � x2
x

" #
:

�11�
If the transform function h is eliminated from Eqs. (10)

and (11), the result is

f
h
� �x2

x � x2
y � x2

z �k2
i
qCp

o
ot
�/�

� ÿ�x2
x � x2

y � x2
z �kf /� Isurfdf

2d

d2 � x2
x

" #
:

The multiplication in the transform domain by �ixx;y;z�2
corresponds to second order di�erential in the real

plane. Hence, the inversion of the above equation gives

f
�
ÿ k2 o2

ox2

�
� o2

oy2
� o2

oz2

��
qCp

o/
ot

� kf
o2/
dx2

�
� o2/

dy2
� o2/

dz2

�
� Isurfdf exp � ÿ d xj j�:

�12�
Dividing Eq. (12) by f and rearranging yields

1

�
ÿ k2

f
o2

ox2

�
� o2

oy2
� o2

oz2

��
qCp

o/
ot

� k
o2/
dx2

�
� o2/

dy2
� o2/

dz2

�
� Isurfd exp � ÿ d xj j�: �13�

The lattice site temperature can be obtained from

Eq. (13), which is the di�erential form of Eqs. (8)

and (9). Three-dimensional form of the energy equation

is di�erent than its counterpart that obtained for

one-dimensional case, i.e., an additional term

[k2=f �o2=oy2 � o2=oz2��qCpo/=ot] representing the non-

equilibrium heating in the y- and z-axes appears in three-

dimensional form of the governing equation. Moreover,

if the term k2=f �o2=ox2 � o2=ox2 � o2=ox2��qCpo/=ot� is

neglected for all f values, Eq. (13) becomes

qCp

o/
ot
� k

o2/
dx2

�
� o2/

dx2
� o2/

dx2

�
� Isurfd exp � ÿ djxj�

which is exactly the same as a Fourier heat conduction

Eq. (3). The equations derived from the electron kinetic

theory approach for the heat conduction process are

more general than the Fourier equation.

2.4. Numerical solution

The numerical method employed uses a ®nite di�er-

ence scheme, which is well established in the literature

[16]. In order to obtain accurate results, the convergency

criteria should be met. The stability criteria for each

model are given as follows:

One-equation model:

1 P ABS
qCp

Dt

(
ÿ 2k

1

�Dx�2
"

� 1

�Dy�2 �
1

�Dz�2
#)

� ABS
k

�Dx�2
(

� k

�Dy�2 �
k

�Dz�2
)
ÿ ABS

qCp

Dt

� �

Two-equation model:

ABS 1

����� ÿ 2kDt

qCp�Dx�2 ÿ
GDt
qCp

������ ABS
2kDt

qCp�Dx�2
�����

����� < 1

Electron kinetic theory approach:

1PABS
f qCp

Dt

"
� 2k2qCp

1

Dt�Dx�2
"

� 1

Dt�Dy�2 �
1

Dt�Dz�2
#

ÿ 2kf
1

�Dx�2
"

� 1

�Dy�2 �
1

�Dz�2
##
�ABS

kf

�Dx�2
(

ÿ 2k2qCp

Dt�Dx�2
)

�ABS
kf

�Dy�2
(

ÿ 2k2qCp

Dt�Dy�2
)
�ABS

kf

�Dz�2
(

ÿ 2k2qCp

Dt�Dz�2
)

�ABS
2k2qCp

Dt�Dx�2
(

� 2k2qCp

Dt�Dy�2 �
2k2qCp

Dt�Dz�2
)

ÿABS
f qCp

Dt

(
� 2k2qCp

1

Dt�Dx�2
"

� 1

Dt�Dy�2 �
1

Dt�Dz�2
#)

where Dx;Dy, and Dz are spatial increments in x-, y-, and

z-axes while Dt is the time increment.

Gold is used as the workpiece material. The selection

of gold is because of its thermo-physical properties,

which are available in the literature [9]. The thermo-

Table 1

Thermal properties of gold used in the computation (9)

d (1/m) a �m2=s� Cl �J=m
3

K� k (W/m K) G �W=m
3

K� Ce �W=m
3

K�
6:16� 107 1:26� 10ÿ4 2:5� 106 315 2:6� 1016 2:1� 104
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physical properties of gold are given in Table 1 while the

pulse properties are given in Table 2.

3. Results and discussion

The comparison of predictions from the Fourier

heating, two-equation model, and electron kinetic the-

ory approach is made for the one-dimensional heating

case while the ®ndings from the one and three-dimen-

sional models of Fourier heating and electron kinetic

theory approach are presented later herein. A gold

substrate is used for one-dimensional heating and the

pulse intensity is kept as the same for all models in the

computation.

3.1. Comparison of the Fourier, two-equation and electron

kinetic theory model predictions

The temperature pro®les predicted from the Fourier

theory, two-equation model, and kinetic theory ap-

proach are shown in Figs. 2 and 3 for two pulse lengths.

All the temperature pro®les become almost identical for

a long pulse length. In this case, the two-equation and

electron kinetic theory predictions approach the pre-

dictions of the Fourier heating model. Small discrep-

ancies at the upper end of the temperature pro®les

are negligibly small. As the pulse length reduces to 6 �
10ÿ11 s, the heating time also reduces. The temperature

pro®les predicted from all models di�er considerably

provided that the two-equation model predicts similar

temperature pro®les to that predicted from the electron

kinetic theory. The di�erence in temperature pro®les

occurs because of the fact that the electrons in the sur-

face vicinity absorb the incident laser energy and the

excited electrons do not make su�cient collisions with

the lattice site atoms to transfer their excess energy in the

surface region. Consequently, lattice site temperature in

this region becomes lower than the electron temperature

as evident from Fig. 4 in which the electron temperature

distribution inside the substrate is shown. Therefore, the

Fourier theory fails to predict the temperature rise in the

surface vicinity accurately for a heating time of 6 �
10ÿ11 s. On the other hand, small discrepancies occur

between the electron kinetic theory and two-equation

model predictions. This is due to one or all of the fol-

lowing facts: (i) the f value (fraction of excess electron

energy transferred to the lattice site) is kept constant

during the computations, which may be electron energy

dependent, and (ii) the coupling factor in the two-

equation model is assumed constant in the analysis;

however, the coupling factor is electron mean velocity

and temperature dependent. Consequently, this as-

Table 2

Power intensity, pulse length, and f value used in the compu-

tation

Power intensity

I0�1ÿ rf � �W=m
2�

0:5� 1011 0:5� 1011

Pulse length (s) 6� 10ÿ11 6� 10ÿ10

f 1� 10ÿ4 0:6� 10ÿ4

Fig. 2. Comparison of Fourier, two-equation and electron

kinetic theory predictions for 6E� 10ÿ11 s pulse length, and at

y � 0 and z � 0.

Fig. 3. Comparison of Fourier, two-equation and electron

kinetic theory predictions for 6E� 10ÿ10 s pulse length, and at

y � 0 and z � 0.

Fig. 4. Electron and lattice site temperatures for short pulse

length, and at y � 0 and z � 0.
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sumption may result in low temperature rise in the

surface vicinity at early heating times.

3.2. Predictions of three- and one-dimensional heating

Fig. 5(a) shows the temperature pro®les inside the

substrate predicted from the three-dimensional and one-

dimensional models of Fourier theory while Fig. 5(b)

shows the temperature pro®les inside the substrate pre-

dicted from the three-dimensional and one-dimensional

models of electron kinetic theory for two pulse lengths.

The temperature pro®les are obtained at y � 0 and

z � 0. The temperature pro®les predicted from three-

and one-dimensional cases are identical for both pulse

lengths. This occurs because (i) the radial conduction in

the central region of the heated spot is not considerable,

which in turn results in one-dimensional conduction

heating, and (ii) power intensity distribution is Gaussian

and the power intensity is maximum at the beam center.

This leads to considerable energy input supplied at the

center of the heated solid; therefore, heating approaches

one-dimensional behavior. This may also indicate that

the collisional process yields to one-dimensional be-

havior and the heat transfer in radial direction due to the

collisional process is not substantial. Similar arguments

are also true for the Fourier heating case.

Figs. 6(a) and (b) show the comparative temperature

pro®les obtained from the Fourier and electron kinetic

theory models for two pulse lengths. The temperature

pro®les predicted from electron kinetic theory model for

short pulse length (6� 10ÿ11 s) give lower temperature in

the vicinity of the surface as compared to the Fourier

theory results. As the distance from the surface increases

further inside the substrate the temperature pro®les that

result from the kinetic theory attain higher values as

compared to the Fourier theory predictions. This indi-

cates that the collisional energy transfer to the lattice site

is not substantial at the short heating time, 6� 10ÿ11 s.

In this case, the energy absorbed by the electrons does

not make enough collisions with the lattice site atoms in

the surface vicinity. The electrons, therefore, transfer

their excess energy to lattice site atoms in the region next

to the surface vicinity through the collisional process. As

the heating pulse length increases, the predictions of

electron kinetic theory converge to the Fourier theory

predictions. This occurs because of the Fourier heating

Fig. 5. (a) One- and three-dimensional Fourier theory results for pulse lengths of 6E� 10ÿ11 and 6E� 10ÿ10 s, and at y � 0 and z � 0;

(b) one- and three-dimensional kinetic theory results for pulse lengths of 6E� 1011 s and 6E� 1010 s, and at y � 0 and z � 0.

Fig. 6. (a) Temperature pro®les predicted from the Fourier and kinetic theory in the x-axis for a pulse length of 6E� 10ÿ10 s, and at

y � 0 and z � 0; (b) temperature pro®les predicted from the Fourier and kinetic theory in the x-axis for a pulse length of 6E� 10ÿ11 s,

and at y � 0 and z � 0.
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dominates the conduction process; in which case, the

term �o=ot��o2/=ox2� in the kinetic theory model (Eq.

(13)) has no signi®cant e�ect on the resulting tempera-

ture distributions. The electrons make considerable

collisions with the lattice site atoms in the surface vi-

cinity resulting in increased lattice site temperature for

long pulse length ( 6� 10ÿ10 s). The temperature di�er-

ence in the surface vicinity and the region next to surface

vicinity enhances the phonon relaxation process, i.e., the

conduction heat transfer into solid substrate substanti-

ates.

Fig. 7 shows the temperature gradient (o/=ox) pre-

dicted from the Fourier and electron kinetic theories

with the distance in the x-axis for two pulse lengths. The

temperature gradients predicted from both theories are

similar for the long pulse length (6� 10ÿ10 s). In gen-

eral, the temperature gradient decreases sharply in the

surface vicinity to reach its minimum. As the distance

from the point of minimum increases further inside the

substrate, o/=ox increases gradually. The sharp decrease

of o/=ox in the surface vicinity is due to the rapid in-

crease of the temperature in this region. In this case, the

energy absorbed by the electrons in the surface vicinity

is converted into the internal energy gain of the sub-

strate through collisional process. This gives rise to a

sharp rise of the lattice site temperature. The energy

balance attains among the absorbed energy, internal

energy gain, and the conduction process at the point of

minimum o/=ox [17]. As the distance increases beyond

the point of minimum, the gradual increase in o/=ox
reveals that the conduction e�ect due to phonon relax-

ation dominates. However, as the pulse length reduces,

the temperature gradients predicted from both theories

di�er considerably. The temperature gradient predicted

from the Fourier theory reduces signi®cantly as com-

pared to its counterpart predicted from electron kinetic

theory. The di�erence in o/=ox predicted from both

theories is due to the temperature response of the ma-

terial for a short laser heating pulse as indicated earlier.

Moreover, the fast decay of o/=ox before the point of

minimum appears to have an almost similar trend for

both theories. As the distance increases beyond the

point of minimum, the trend of o/=ox changes, which

indicates that collisional process is as important as the

conduction process due to phonon relaxation for the

short heating pulse.

Fig. 8 shows the temperature pro®les in the y-axis

predicted from both theories at di�erent x-axis locations

for two pulse lengths. The temperature pro®les predicted

from both theories become almost similar. The small

discrepancies are evident at the central region of the

pro®les. It should be noted that the peak temperature

occurs at the center of the heated spot as marked in the

®gures. The discrepancies may be because of the e�ect of

the power intensity in this region, i.e., the power inten-

sity is maximum in this region. In this case, the radial

heat transfer di�ers slightly for both models such that

the Fourier theory results in slightly lower radial heat

transfer as compared to electron kinetic theory, i.e., the

temperature increases slightly in the central region of the

heated spot in the Fourier heating case. This e�ect is also

observed at di�erent x-axis locations. On the other

hand, the temperature pro®les predicted from both

Fig. 7. d/=dx predicted from the Fourier and kinetic theory

along the y-axis for two pulse lengths and at di�erent x-axis

locations.

Fig. 8. Temperature pro®les predicted from the Fourier and kinetic theory along the y-axis for two pulse lengths and at di�erent x-axis

locations.
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theories di�er considerably for short pulse length. The

di�erence between both temperature pro®les is more

pronounced at the workpiece surface where x-axis lo-

cation is at the heated spot center (x � 0). This di�erence

is because of the collisional process, which takes place

substantially in the surface vicinity. Moreover, all the

excess energy of the electrons cannot be transferred to

lattice site atoms through the collisional process in the

surface vicinity during a short heating time. Therefore,

the excess energy of the electrons is transferred to lattice

sites during further collisions in the region next to the

surface vicinity as described earlier. As the location in

the x-axis moves into the substrate, the di�erence be-

tween both predictions becomes small. This is again

because of the collisional process. At a depth of

20� 10ÿ8 m, the temperature predicted from electron

kinetic theory becomes higher than that corresponding

to the Fourier theory. This indicates that the contribu-

tion of collisional process to the conduction energy

transfer due to phonon relaxation is considerable, i.e.,

the energy transfer to lattice sites enhances with the

collisional process taking place in this region.

Fig. 9 shows the variation of the temperature gradi-

ents in the y-axis (o/=oy) predicted from both theories

with distance at di�erent locations in the x-axis. The

o/=oy values predicted from both theories are almost

identical for long pulse length. In general, o/=oy attains

the maximum value before it reduces to zero at the

heated spot center. The energy balance among the ab-

sorbed energy, internal energy gain, and the conduction

process occurs at the point of maximum, as explained

earlier. As the x-axis location moves into the substrate,

the slope of o/=oy changes, but the point of maximum

remains the same. In the case of short pulse length,

o/=oy distribution predicted from both theories di�ers

considerably. This is because the energy exchange

mechanisms take place in both theories. In this case,

kinetic theory predicts relatively small slope of o/=oy
along the y-axis as compared to that predicted from the

Fourier theory. The location of maximum o/=oy in the

y-axis remains the same for both theories.

4. Conclusion

In the present study, the temperature pro®les pre-

dicted from electron kinetic theory approach and the

Fourier heating model are compared for three- and one-

dimensional heating cases. In general, temperature

pro®les for three- and one-dimensional heating cases are

almost identical. This indicates that the three-dimen-

sional heating approaches one-dimensional heating for a

Gausssian power intensity pro®le. Moreover, the energy

exchange mechanism taking place in the radial direction

di�ers for both models during the short pulse heating.

The Fourier heating model fails to predict correct tem-

perature pro®les at short heating duration. The electron

kinetic theory predictions become similar to the ®ndings

of the two-equation model. The speci®c conclusions

derived from the present study may be listed as follows:

1. The radial conduction in the central region of the

heated spot is not considerable; in this case, the

three-dimensional temperature predictions approach

one-dimensional predictions.

2. Kinetic theory predicts lower temperatures in the sur-

face vicinity of the substrate as compared to the Fou-

rier theory results for the short pulse heating. The

deviation of temperature pro®les is because of di�er-

ent heating mechanisms considered in the analyses. In

electron kinetic theory, not all the electron excess en-

ergy transfers to the lattice sites in the surface vicinity

at short duration of the heating process. As the pulse

length increases, and thus the heating time, the tem-

perature predictions from both three- and one-dimen-

sional models become identical.

3. The energy balance is attained at the point where

o/=ox becomes minimum in the surface vicinity.

The location of the point of minimum for both the-

ories is the same. At short pulse length, the change

of the trend in o/=ox occurs for both theories beyond

the point of minimum. This reveals that the collision-

al process contributes to energy exchange mechanism

as much as the phonon relaxation process due to

lattice site temperature di�erence. The point of

Fig. 9. d/=dy predicted from the Fourier and kinetic theory along the y-axis for two pulse lengths and at di�erent x-axis locations.

B.S. Yilbas / International Journal of Heat and Mass Transfer 44 (2001) 1925±1936 1935



minimum o/=ox moves inside the substrate for the

long length pulse heating.

4. The temperature pro®les in the y-axis become almost

the same for both theories at long length pulse, but

considerable deviation in temperature pro®les occurs

at short pulse length heating processes. This indicates

that the radial heat transfer di�ers considerably in the

collisional process than in the classical conduction

heating.

5. The energy balance is attained at a location in the y-

axis, in which case o/=oy is maximum. The location

of the point of energy balance is independent of the

x-axis locations.
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